论文标题

$(d,\ infty)$ - rll输入约束二进制二进制二进制二进制二进制二进制二元渠道的反馈能力调整的编码方案

A Feedback Capacity-Achieving Coding Scheme for the $(d,\infty)$-RLL Input-Constrained Binary Erasure Channel

论文作者

Rameshwar, V. Arvind, Kashyap, Navin

论文摘要

本文认为无内存的输入约束二进制擦除通道(BEC)。通道输入约束是$(d,\ infty)$ - Runlength Limited(RLL)约束,该约束要求将输入序列中的任何连续$ 1 $ S分开至少$ d $ 0 $ s。我们考虑了一个有因果关系,无噪声的反馈的场景。我们演示了一种简单的,基于标签的,零错误的反馈编码方案,我们被证明是反馈能力实现的,并且作为副产品,可以明确表征反馈能力。我们的证明是基于表明我们的反馈编码方案的速率等于使用Sabag等人的单个字母边界技术得出的反馈能力上的上限。 (2017)。此外,我们使用Thangaraj(2017)的工具注意到,$(d,\ infty)$ - rll输入受约束的反馈和非反馈容量之间存在差距,至少在$ d = 1,2 $中。

This paper considers the memoryless input-constrained binary erasure channel (BEC). The channel input constraint is the $(d,\infty)$-runlength limited (RLL) constraint, which mandates that any pair of successive $1$s in the input sequence be separated by at least $d$ $0$s. We consider a scenario where there is causal, noiseless feedback from the decoder. We demonstrate a simple, labelling-based, zero-error feedback coding scheme, which we prove to be feedback capacity-achieving, and, as a by-product, obtain an explicit characterization of the feedback capacity. Our proof is based on showing that the rate of our feedback coding scheme equals an upper bound on the feedback capacity derived using the single-letter bounding techniques of Sabag et al. (2017). Further, we note using the tools of Thangaraj (2017) that there is a gap between the feedback and non-feedback capacities of the $(d,\infty)$-RLL input constrained BEC, at least for $d=1,2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源