论文标题
在封闭的复合物(基本)差分形式的扩展上:(基本)霍奇数字和(横向)$ p $-kähler结构
On extension of closed complex (basic) differential forms: (basic) Hodge numbers and (transversely) $p$-Kähler structures
论文作者
论文摘要
受到D. Wei-S的最新作品的启发。 Zhu关于封闭的复杂差异形式的扩展以及Voisin对$ \ partial \ bar {\ partial} $ - lemma的使用,我们获得了几个新的定理,hodge数字的变形不变性,并尊重$ p $-kähler结构的局部稳定性,该结构具有$ \ partial \ bar bar protertial \ bar protertial proppertial proppertial proppertial-proteral {$}。我们的方法更关心通过指数运算符$ e^{i_φ} $的$ d $ clucted扩展。此外,我们通过将Power Series方法调整到Foliated Case,增强了A. El Kacimi Alaoui-B的作品,证明了具有轻度$ \ partial \ bar {\ partial} $属性的横向$ P $-Kähler结构的局部稳定性。 Gmira和P. Railny涉及具有同源性方向性的横向kähler叶子的。我们观察到,即使没有在物质方向上的情况下,横向的KählerFoliation也可以满足$ \ partial \ bar {\ partial} $ - 属性。因此,即使$ p = 1 $(横向kähler),我们的结果也是新的,因为我们可以放弃对初始叶片的相关假设。还介绍了一些关于基本霍奇/bott-的变形不变性的定理,这些定理还介绍了$ \ partial \ bar {\ partial} $ - 属性的属性。
Inspired by a recent work of D. Wei--S. Zhu on the extension of closed complex differential forms and Voisin's usage of the $\partial\bar{\partial}$-lemma, we obtain several new theorems of deformation invariance of Hodge numbers and reprove the local stabilities of $p$-Kähler structures with the $\partial\bar{\partial}$-property. Our approach is more concerned with the $d$-closed extension by means of the exponential operator $e^{ι_φ}$. Furthermore, we prove the local stabilities of transversely $p$-Kähler structures with mild $\partial\bar{\partial}$-property by adapting the power series method to the foliated case, which strengthens the works of A. El Kacimi Alaoui--B. Gmira and P. Raźny on that of the transversely Kähler foliations with homologically orientability. We observe that a transversely Kähler foliation, even without homologically orientability, also satisfies the $\partial\bar{\partial}$-property. So even when $p=1$ (transversely Kähler), our results are new as we can drop the assumption in question on the initial foliation. Several theorems on the deformation invariance of basic Hodge/Bott--Chern numbers with mild $\partial\bar{\partial}$-properties are also presented.