论文标题
异常的约瑟夫森厅效应在宁静的拓扑绝缘子中,并具有列型超导性
Anomalous Josephson Hall effect in doped topological insulators with the nematic superconductivity
论文作者
论文摘要
我们在金茨堡 - 兰道(Ginzburg-Landau)方法中以$ e_u $奇特的奇特奇偶校验研究约瑟夫森效应的物理学。两个组件矢量超导顺序参数使得这种效果相当不寻常。我们知道,Meissner内核具有偏外组件。我们为连接,样品的晶体轴和nematicity方向的不同构型得出电流相关关系。我们表明,在没有任何磁化的情况下,可以在这种系统中观察到异常的约瑟夫森厅效应。也就是说,对于连接和晶轴的确定方向,沿结的约瑟夫森电流的一个成分是由整个接触的阶参数相位差引起的。我们还计算通过连接的最大电流的磁场依赖性。我们发现,最大约瑟夫森电流的Fraunhofer振荡周期取决于结的几何形状,磁场的方向和nematicity vector。
We study the physics of the Josephson effect in nematic superconductors with $E_u$ odd parity in the Ginzburg-Landau approach. Two-component vector superconducting order parameter makes this effect rather unusual. We get that the Meissner kernel has off-diagonal components. We derive current-phase relations for different configurations of the junction, crystallographic axes of the sample, and nematicity direction. We show that an anomalous Josephson Hall effect can be observed in such a system without any magnetization. That is, for definite orientations of the junction and crystal axes, a component of the Josephson current along the junction is induced by the order parameter phase difference across the contact. We also calculate the magnetic field dependence of the maximum current through the junction. We find that the period of the Fraunhofer oscillations of the maximum Josephson current depends on the geometry of the junction, direction of the magnetic field, and nematicity vector.