论文标题

$ l^2 $ sobolev散射分散散射转换的空间射击与散落的ablowitz-ladik系统有关

$L^2$ Sobolev space bijectivity of the scattering-inverse scattering transforms related to defocusing Ablowitz-Ladik systems

论文作者

Chen, Meisen, Fan, Engui, He, Jingsong

论文摘要

在本文中,我们建立了$ l^2 $ -sobolev空间射击与散射变换有关的偶数散射变换。一方面,在直接问题中,基于频谱问题,我们建立了反射系数和Coreconsent Riemann-Hilbert问题。而且我们还证明,如果电势属于$ l^{2,k} $空间,那么反射系数属于$ h^k_θ(σ)$。另一方面,在逆问题中,基于Riemann-Hilbert问题,我们获得了核心的重建公式,并从反射系数中恢复了电势。而且我们还确认,如果反射系数在$ h^k_θ(σ)$中,那么我们表明电势也属于$ l^{2,k} $。这项研究还证实,对于散热ablowitz-ladik方程的初始值问题,它的初始电位属于$ l^{2,k} $,并且满足$ \ parallel q \ parallel_ \ parallel_ \ infty <1 $,然后是$ t \ ne0 $的解决方案,也属于$ l^{2,K {2,k} $。

In this paper, we establish $L^2$-Sobolev space bijectivity of the inverse scattering transform related to the defocusing Ablowitz-Ladik system. On the one hand, in the direct problem, based on the spectral problem, we establish the reflection coefficient and the corespondent Riemann-Hilbert problem. And we also prove that if the potential belongs to $l^{2,k}$ space, then the reflection coefficient belongs to $H^k_θ(Σ)$. On the other hand, in the inverse problem, based on the Riemann-Hilbert problem, we obtain the corespondent reconstructed formula and recover potentials from reflection coefficients. And we also confirm that if reflection coefficients are in $H^k_θ(Σ)$, then we show that potentials also belong to $l^{2,k}$. This study also confirm that for the initial-valued problem of defocusing Ablowitz-Ladik equations, it the initial potential belongs to $l^{2,k}$ and satisfying $\parallel q\parallel_\infty<1$, then the solution for $t\ne0$ also belongs to $l^{2,k}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源