论文标题

冷却悬浮的旋转陀螺仪的光旋转驱动极限周期振荡

Cooling the optical-spin driven limit cycle oscillations of a levitated gyroscope

论文作者

Arita, Yoshihiko, Simpson, Stephen H., Bruce, Graham D., Wright, Ewan M., Zemánek, Pavel, Dholakia, Kishan

论文摘要

与不均​​匀的光旋角动量相关的非保守的方位力作用在光学诱捕中起着关键作用。有趣的是,双重微球可以稳定地悬浮,并在超高真空中循环旋转的光学陷阱迅速旋转,而各向同性球通常会不稳定和排出,即使在相对适度的压力下也是如此。在这里,我们表明,这种明显的关键悖论的分辨率基于定向平均,有效的力的形式,该形式作用于旋转的双向粒子上。特别是,有效的方位角组件被严重抑制且高度非线性。结果,如果不完美的话,非保守效应是强烈的。它们的影响只有在非常低的压力下才能观察到嘈杂,纳米尺度极限周期或轨道的形成。最后,我们展示了参数反馈如何合成一种耗散形式,即保留极限循环振荡所必需的,而无需引入其他热波动。这允许在Millikelvin顺序制备具有有效温度的高度连贯,自我维持的振荡。通过旋转的非球形粒子的材料结构来剪裁方位角旋转力为设计超稳定的光转子设计带来了新的机会。此外,我们已经表明,这项工作中具有的方位角力的独特轮廓允许形成可以稳定和冷却的纳米级极限循环。原则上,这种方法可以使极限循环冷却到量子状态,从而可以实现量子同步的实验,或者纠缠中镜体的替代方法。

The non-conservative, azimuthal forces associated with inhomogeneous optical-spin angular momentum play a critical role in optical trapping. Intriguingly, birefringent microspheres can be stably levitated and rapidly rotated in circularly polarized optical traps in ultra-high vacuum whereas isotropic spheres are typically destabilized and expelled, even at relatively modest pressures. Here we show that the resolution of this apparent key paradox rests in the form of the orientationally averaged, effective forces acting on the spinning birefringent particle. In particular, the effective azimuthal component is heavily suppressed and highly non-linear. As a consequence, non-conservative effects are strongly, if imperfectly, inhibited. Their influence is apparent only at very low pressures where we observe the formation of noisy, nano-scale limit cycles or orbits. Finally, we show how parametric feedback can synthesize a form of dissipation, necessary to preserve limit cycle oscillation, without introducing additional thermal fluctuations. This allows the preparation of highly coherent, self-sustained oscillations with effective temperatures on the order of a milliKelvin. The tailoring of azimuthal spin forces through the material structure of a spinning, non-spherical particle opens up new opportunities for the design of ultra stable optical rotors. In addition, we have shown that the unique profile of the azimuthal force, featured in this work, allows for the formation of nano-scale limit cycles that can be stabilized and cooled. In principle, this approach could enable the cooling of limit cycles into the quantum regime, allowing for experimental realisation of quantum synchronization, or alternative ways of entangling mesoscopic bodies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源