论文标题

在高斯渠道下的集成感测和通信的基本权衡

On the Fundamental Tradeoff of Integrated Sensing and Communications Under Gaussian Channels

论文作者

Xiong, Yifeng, Liu, Fan, Cui, Yuanhao, Yuan, Weijie, Han, Tony Xiao, Caire, Giuseppe

论文摘要

ISAC被认为是下一代无线网络的有前途的技术,该技术通过共享无线资源的共同使用为单个S&C系统提供了显着的性能增长。 S&C绩效折衷的表征是ISAC理论基础的核心。在本文中,我们考虑了矢量高斯频道下的点对点ISAC模型,并建议将CRB率区域用作描绘基本S&C权衡的基本工具。特别是,我们考虑了从双功能ISAC TX发出统一的ISAC波形的场景,该方案同时使用通信RX和Sensing RX执行了S&C任务。为了执行S&C任务,ISAC波形必须随机传达通信信息,并且在ISAC TX和Sensing RX作为参考传感信号中的实现都与典型的雷达系统一样。 作为本文的主要贡献,我们表征了CRB率区域两个角点的S&C性能,即$ p_ {sc} $表示最大。可实现的速度受到最小的约束。 CRB和$ P_ {CS} $指示最小值。可实现的CRB受到最大约束。速度。特别是,我们以$ p_ {sc} $得出高SNR容量,并为$ p_ {cs} $的传感CRB提供下限和上限。我们表明,这两个点可以通过传统的高斯信号传导和分别依赖于符号歧管上均匀分布的新颖策略来实现。基于上述分析,我们为可实现的CRB率区域提供了外部结合和各种内部边界。 我们的主要结果表明,ISAC系统的两倍权衡,包括子空间权衡(ST)和确定性随机权衡(DRT),分别依赖于S&C所采用的资源分配和数据调制方案。

ISAC is recognized as a promising technology for the next-generation wireless networks, which provides significant performance gains over individual S&C systems via the shared use of wireless resources. The characterization of the S&C performance tradeoff is at the core of the theoretical foundation of ISAC. In this paper, we consider a point-to-point ISAC model under vector Gaussian channels, and propose to use the CRB-rate region as a basic tool for depicting the fundamental S&C tradeoff. In particular, we consider the scenario where a unified ISAC waveform is emitted from a dual-functional ISAC Tx, which simultaneously performs S&C tasks with a communication Rx and a sensing Rx. In order to perform both S&C tasks, the ISAC waveform is required to be random to convey communication information, with realizations being perfectly known at both the ISAC Tx and the sensing Rx as a reference sensing signal as in typical radar systems. As the main contribution of this paper, we characterize the S&C performance at the two corner points of the CRB-rate region, namely, $P_{SC}$ indicating the max. achievable rate constrained by the min. CRB, and $P_{CS}$ indicating the min. achievable CRB constrained by the max. rate. In particular, we derive the high-SNR capacity at $P_{SC}$, and provide lower and upper bounds for the sensing CRB at $P_{CS}$. We show that these two points can be achieved by the conventional Gaussian signaling and a novel strategy relying on the uniform distribution over the Stiefel manifold, respectively. Based on the above-mentioned analysis, we provide an outer bound and various inner bounds for the achievable CRB-rate regions. Our main results reveal a two-fold tradeoff in ISAC systems, consisting of the subspace tradeoff (ST) and the deterministic-random tradeoff (DRT) that depend on the resource allocation and data modulation schemes employed for S&C, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源