论文标题

半径为零的符号单曲,$μ$ - 稳定家庭的等级

Symplectic monodromy at radius zero and equimultiplicity of $μ$-constant families

论文作者

de Bobadilla, Javier Fernández, Pełka, Tomasz

论文摘要

我们表明,每个具有恒定MILNOR数量的孤立性超表面奇异性的家族都具有恒定的多重性。为了实现这一目标,我们将“半径零”单片的A'Campo模型具有符号结构。这种新方法使麦克莱恩融合的光谱序列趋向于固定点的固定点浮子同源性,以使更通用的环境非常适合研究$μ$ $ constant的家族。

We show that every family of isolated hypersurface singularity with constant Milnor number has constant multiplicity. To achieve this, we endow the A'Campo model of "radius zero" monodromy with a symplectic structure. This new approach allows to generalize a spectral sequence of McLean converging to fixed point Floer homology of iterates of the monodromy to a more general setting which is well suited to study $μ$-constant families.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源