论文标题

Burdzy-Pitman猜想的组合证明

A combinatorial proof of the Burdzy-Pitman conjecture

论文作者

Cichomski, Stanisław, Petrov, Fedor

论文摘要

我们证明了两部分图的高度差异的尖锐上限:让$(u,v,e)$是一个带有$ u = \ = \ {u_1,u_2,\ dots,u_n \} $ and u_n \} $和$ v = \ \ \ \ \ {v_1,v_1,v_2,v_2,v_2,v_2,dots,v_n p,v_n p,v_n \ v_n \} $ u_n \} $的两部分图形图对于$ n \ ge k> \ frac {n} {2} $,我们表明$ \ sum_ {1 \ le i,j \ le n} 1 {\ big \ \ {| \ text {deg} {deg}(u_i) - \ text {deg}(v_j)该定理的更强,更概率的版本,因此证实了关于连贯和独立分布的最大传播的顽强的猜想。

We prove a sharp upper bound for the number of high degree differences in bipartite graphs: let $ (U, V, E)$ be a bipartite graph with $U=\{u_1, u_2, \dots, u_n\}$ and $V=\{v_1, v_2, \dots, v_n\}$; for $n\ge k>\frac{n}{2}$ we show that $\sum_{1\le i,j \le n} 1 {\Big\{|\text{deg}(u_i)-\text{deg}(v_j)|\ge k}\Big\} \le 2k(n-k).$ As a direct application we show a slightly stronger, probabilistic version of this theorem and thus confirm the Burdzy-Pitman conjecture about the maximal spread of coherent and independent distributions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源