论文标题

关于最坏情况以外的调度机制

On Scheduling Mechanisms Beyond the Worst Case

论文作者

Gao, Yansong, Zhang, Jie

论文摘要

自从算法机制设计\ Cite {NR99}开始以来,已经研究了调度无关机器的问题。这是一个资源分配问题,需要将$ M $任务分配给$ n $机器进行执行。机器被认为是战略代理商,他们可能会说出其执行成本,以最大程度地减少其分配的工作量。为了解决货币付款不是赔偿机器费用的选择时,\ citeauthor {dblp:journals/mst/koutsoupias14} [2014] [2014]设计了两个\ textit {真实}机制,k和p分别达到了$ \ freac $ \ n+n+1} $ nimization的近似值,并实现了$ \ n+n+1} $ {2}的近似值。此外,没有真实的机制可以比$ \ frac {n+1} {2} $更好地实现近似比。因此,机理k是最佳的。虽然近似比提供了强大的最坏情况保证,但它也限制了我们对各种输入的机制性能的全面理解。本文调查了最坏情况以外的这两种调度机制。我们首先表明,在每个输入中,机制K的社会成本都比机制较小。也就是说,机理k比机理P点好。对于机制K。为了更好地理解该分布的常数,一方面,我们通过插入一些共同的分布来估计其价值。另一方面,我们表明这种收敛的边界改善了仅捕获单任务设置的已知界限\ cite {dblp:conf/aaai/zhang18}。最后,我们发现机理的平均案例近似值比收敛到相同的常数。

The problem of scheduling unrelated machines has been studied since the inception of algorithmic mechanism design \cite{NR99}. It is a resource allocation problem that entails assigning $m$ tasks to $n$ machines for execution. Machines are regarded as strategic agents who may lie about their execution costs so as to minimize their allocated workload. To address the situation when monetary payment is not an option to compensate the machines' costs, \citeauthor{DBLP:journals/mst/Koutsoupias14} [2014] devised two \textit{truthful} mechanisms, K and P respectively, that achieve an approximation ratio of $\frac{n+1}{2}$ and $n$, for social cost minimization. In addition, no truthful mechanism can achieve an approximation ratio better than $\frac{n+1}{2}$. Hence, mechanism K is optimal. While approximation ratio provides a strong worst-case guarantee, it also limits us to a comprehensive understanding of mechanism performance on various inputs. This paper investigates these two scheduling mechanisms beyond the worst case. We first show that mechanism K achieves a smaller social cost than mechanism P on every input. That is, mechanism K is pointwise better than mechanism P. Next, for each task $j$, when machines' execution costs $t_i^j$ are independent and identically drawn from a task-specific distribution $F^j(t)$, we show that the average-case approximation ratio of mechanism K converges to a constant. This bound is tight for mechanism K. For a better understanding of this distribution dependent constant, on the one hand, we estimate its value by plugging in a few common distributions; on the other, we show that this converging bound improves a known bound \cite{DBLP:conf/aaai/Zhang18} which only captures the single-task setting. Last, we find that the average-case approximation ratio of mechanism P converges to the same constant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源