论文标题

PARC:物理意识到的经常性卷积神经网络,以吸收能量材料的中尺度反应性力学

PARC: Physics-Aware Recurrent Convolutional Neural Networks to Assimilate Meso-scale Reactive Mechanics of Energetic Materials

论文作者

Nguyen, Phong C. H., Nguyen, Yen-Thi, Choi, Joseph B., Seshadri, Pradeep K., Udaykumar, H. S., Baek, Stephen

论文摘要

电击引发的能量材料(EM)的热机械响应受其微观结构的影响很大,这为在“材料划分”框架中设计了一个机会。但是,当前的设计实践是有限的,因为需要大量的模拟集合来构建复杂的EM结构 - 绩效链接。我们介绍了物理感知的反复卷积(PARC)神经网络,这是一种深入学习算法,能够从适度数量的高分辨率直接数值模拟(DNS)中学习EM的中尺度热力学。验证结果表明,PARC可以以与DNS相当的精度预测电击EM的机械响应,但计算时间却明显更少。 PARC的物理意识增强了其建模能力和概括性,尤其是在看不见的预测场景中受到挑战时。我们还证明,在PARC处可视化人造神经元可以阐明EM热力学的重要方面,并为概念化EM提供额外的镜头。

The thermo-mechanical response of shock-initiated energetic materials (EM) is highly influenced by their microstructures, presenting an opportunity to engineer EM microstructure in a "materials-by-design" framework. However, the current design practice is limited, as a large ensemble of simulations is required to construct the complex EM structure-property-performance linkages. We present the Physics-Aware Recurrent Convolutional (PARC) Neural Network, a deep-learning algorithm capable of learning the mesoscale thermo-mechanics of EM from a modest number of high-resolution direct numerical simulations (DNS). Validation results demonstrated that PARC could predict the themo-mechanical response of shocked EM with a comparable accuracy to DNS but with notably less computation time. The physics awareness of PARC enhances its modeling capabilities and generalizability, especially when challenged in unseen prediction scenarios. We also demonstrate that visualizing the artificial neurons at PARC can shed light on important aspects of EM thermos-mechanics and provide an additional lens for conceptualizing EM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源