论文标题

利用折纸的整体逆设计利用可解释的机器学习

Harnessing Interpretable Machine Learning for Holistic Inverse Design of Origami

论文作者

Zhu, Yi, Filipov, Evgueni T.

论文摘要

这项工作利用可解释的机器学习方法来解决折纸启发系统的具有挑战性的反设计问题。我们表明,决策树的森林方法特别适合拟合折纸数据库,其中包含设计功能和功能性能,以生成对功能折纸的逆设计的人类可行决策规则。首先,该树方法是唯一的,因为它可以处理分类特征和连续特征之间的复杂交互,从而可以比较设计的不同折纸图案。其次,这种可解释的方法可以解决具有多种和多物理性能目标的功能折纸的多目标问题。最后,该方法可以扩展折纸的现有形状拟合算法,以考虑非对象性能。所提出的框架使折纸的整体逆设计(考虑形状和功能都可以)为各种应用(例如超材料,可部署的结构,软机器人,生物医学设备等)构建新颖的可重构结构。

This work harnesses interpretable machine learning methods to address the challenging inverse design problem of origami-inspired systems. We show that a decision tree-random forest method is particularly suitable for fitting origami databases, containing both design features and functional performance, to generate human-understandable decision rules for the inverse design of functional origami. First, the tree method is unique because it can handle complex interactions between categorical features and continuous features, allowing it to compare different origami patterns for a design. Second, this interpretable method can tackle multi-objective problems for designing functional origami with multiple and multi-physical performance targets. Finally, the method can extend existing shape-fitting algorithms for origami to consider non-geometrical performance. The proposed framework enables holistic inverse design of origami, considering both shape and function, to build novel reconfigurable structures for various applications such as metamaterials, deployable structures, soft robots, biomedical devices, and many more.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源