论文标题
边界点,最小$ l^2 $积分和凹陷属性IV-开放式Riemann表面的纤维
Boundary points, minimal $L^2$ integrals and concavity property IV -- fibrations over open Riemann surfaces
论文作者
论文摘要
在本文中,我们考虑了在开放的Riemann表面上与边界点上的模块相关的最小$ l^2 $积分,并给出了最小$ l^2 $积分的凹陷属性的特征,将其退化为线性。
In this article, we consider the minimal $L^2$ integrals related to modules at boundary points on fibrations over open Riemann surfaces, and present a characterization for the concavity property of the minimal $L^2$ integrals degenerating to linearity.