论文标题

无形到可见的:通过协作学习变量自动编码器,使用空中超声来进行隐私意识的人类实例进行细分

Invisible-to-Visible: Privacy-Aware Human Instance Segmentation using Airborne Ultrasound via Collaborative Learning Variational Autoencoder

论文作者

Tanigawa, Risako, Ishii, Yasunori, Kozuka, Kazuki, Yamashita, Takayoshi

论文摘要

在室内的行动理解中,我们必须认识到人类的姿势和行动,以考虑隐私。尽管相机图像可用于高度准确的人类动作识别,但相机图像并不能保留隐私。因此,我们提出了一项新的任务,以从无形信息(尤其是空降超声)中进行人体实例分割,以供行动识别。要从隐形信息执行实例分割,我们首先将声波转换为反映的声音定向图像(声音图像)。尽管声音图像可以粗略地识别一个人的位置,但详细的形状是模棱两可的。为了解决这个问题,我们提出了一个协作学习变异自动编码器(CL-VAE),该自动编码器(CL-VAE)同时在培训期间使用声音和RGB图像。在推论中,只能从声音图像中获得实例分割结果。由于性能验证,CL-VAE可以比传统的变异自动编码器和其他一些模型更准确地估算人类实例分割。由于此方法可以单独获取人类分割,因此可以应用于具有隐私保护的人类行动识别任务。

In action understanding in indoor, we have to recognize human pose and action considering privacy. Although camera images can be used for highly accurate human action recognition, camera images do not preserve privacy. Therefore, we propose a new task for human instance segmentation from invisible information, especially airborne ultrasound, for action recognition. To perform instance segmentation from invisible information, we first convert sound waves to reflected sound directional images (sound images). Although the sound images can roughly identify the location of a person, the detailed shape is ambiguous. To address this problem, we propose a collaborative learning variational autoencoder (CL-VAE) that simultaneously uses sound and RGB images during training. In inference, it is possible to obtain instance segmentation results only from sound images. As a result of performance verification, CL-VAE could estimate human instance segmentations more accurately than conventional variational autoencoder and some other models. Since this method can obtain human segmentations individually, it could be applied to human action recognition tasks with privacy protection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源