论文标题

通过个性化激励措施减少拥塞

Congestion Reduction via Personalized Incentives

论文作者

Ghafelebashi, Ali, Razaviyayn, Meisam, Dessouky, Maged

论文摘要

随着人口增长和城市发展的迅速,交通拥堵已成为不可避免的问题,尤其是在大城市。过去,已经提出了许多减少交通拥堵的策略,从延长道路到运输需求管理。特别是,拥堵定价方案已被用作交通控制的负增强。在这个项目中,我们研究了一种为驾驶员提供不同途径的积极激励措施的另一种方法。更具体地说,我们提出了一种算法,以减少交通拥堵并通过向驾驶员提供个性化激励措施来提高路由效率。我们利用智能设备与驾驶员通信的广泛通信性,并使用个人的偏好和汇总交通信息开发激励机制。解决大规模优化问题后,提供了激励措施,以最大程度地减少总旅行时间(或最大程度地减少网络的任何成本函数,例如总碳排放)。由于需要在网络中不断解决这个庞大的大小优化问题,因此我们开发了一种分布式计算方法。所提出的分布式算法可以保证在通过真实数据验证的一组轻度假设下收敛。我们使用洛杉矶地区的流量数据评估了算法的性能。我们的实验表明,在动脉和高速公路上,充血减少了11%。

With rapid population growth and urban development, traffic congestion has become an inescapable issue, especially in large cities. Many congestion reduction strategies have been proposed in the past, ranging from roadway extension to transportation demand management. In particular, congestion pricing schemes have been used as negative reinforcements for traffic control. In this project, we study an alternative approach of offering positive incentives to drivers to take different routes. More specifically, we propose an algorithm to reduce traffic congestion and improve routing efficiency via offering personalized incentives to drivers. We exploit the wide-accessibility of smart devices to communicate with drivers and develop an incentive offering mechanism using individuals' preferences and aggregate traffic information. The incentives are offered after solving a large-scale optimization problem in order to minimize the total travel time (or minimize any cost function of the network such as total Carbon emission). Since this massive size optimization problem needs to be solved continually in the network, we developed a distributed computational approach. The proposed distributed algorithm is guaranteed to converge under a mild set of assumptions that are verified with real data. We evaluated the performance of our algorithm using traffic data from the Los Angeles area. Our experiments show congestion reduction of up to 11% in arterial roads and highways.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源