论文标题
来自分散总和的广告Virasoro-Shapiro
AdS Virasoro-Shapiro from dispersive sum rules
论文作者
论文摘要
我们将应力 - 能量张量的四点相关器以$ {\ cal n} = 4 $ sym的速度,以中央电荷的反向订单,但包括$ 1/λ$的所有订单校正。这对应于Virasoro-Shapiro振幅的ADS版本与小$α'$/低能扩展中的所有订单。使用Mellin空间中的分散关系,我们得出了一组无限的总规则。这些总规则强烈限制了振幅的形式,并根据可集成性可获得的重量弦乐操作员的CFT数据来确定低能扩展中的所有系数。对于对平面幅度的第一组校正,我们找到了与集成性和本地化结果一致的唯一解决方案。
We consider the four-point correlator of the stress-energy tensor in ${\cal N}=4$ SYM, to leading order in inverse powers of the central charge, but including all order corrections in $1/λ$. This corresponds to the AdS version of the Virasoro-Shapiro amplitude to all orders in the small $α'$/low energy expansion. Using dispersion relations in Mellin space, we derive an infinite set of sum rules. These sum rules strongly constrain the form of the amplitude, and determine all coefficients in the low energy expansion in terms of the CFT data for heavy string operators, in principle available from integrability. For the first set of corrections to the flat space amplitude we find a unique solution consistent with the results from integrability and localisation.