论文标题
一维随机波方程的非平衡固定状态的扰动理论
Perturbation theory for a non-equilibrium stationary state of a one-dimensional stochastic wave equation
论文作者
论文摘要
我们使用扰动理论解决了针对具有非线性的一维随机klein-gordon波方程来构建非平衡固定态的问题。审查了线性理论,但具有线性运动方程,包括一个附加的潜在项,该项出现在对应于非线性运动方程的状态的扰动扩展的重新归一化中。电位是固定点方程的解决方案。确定了两点函数的扩展中的低阶项。
We address the problem of constructing a non-equilibrium stationary state for a one-dimensional stochastic Klein-Gordon wave equation with non-linearity, using perturbation theory. The linear theory is reviewed, but with the linear equations of motion including an additional potential term which emerges in the renormalization of the perturbation expansion for the state corresponding to the non-linear equations of motion. The potential is the solution to a fixed point equation. Low order terms in the expansion for the two-point function are determined.