论文标题
部分可观测时空混沌系统的无模型预测
Beyond the Local Volume. II. Population Scaleheights and Ages of Ultracool Dwarfs in Deep HST/WFC3 Parallel Fields
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Ultracool dwarfs represent a significant proportion of stars in the Milky Way,and deep samples of these sources have the potential to constrain the formation history and evolution of low-mass objects in the Galaxy. Until recently, spectral samples have been limited to the local volume (d<100 pc). Here, we analyze a sample of 164 spectroscopically-characterized ultracool dwarfs identified by Aganze et al. (2022) in the Hubble Space Telescope WFC3 Infrared Spectroscopic Parallel (WISP) Survey and 3D-HST. We model the observed luminosity function using population simulations to place constraints on scaleheights, vertical velocity dispersions and population ages as a function of spectral type. Our star counts are consistent with a power-law mass function and constant star formation history for ultracool dwarfs, with vertical scaleheights 249$_{-61}^{+48}$ pc for late M dwarfs, 153$_{-30}^{+56}$ pc for L dwarfs, and 175$_{-56}^{+149}$ pc for T dwarfs. Using spatial and velocity dispersion relations, these scaleheights correspond to disk population ages of 3.6$_{-1.0}^{+0.8}$ for late M dwarfs, 2.1$_{-0.5}^{+0.9}$ Gyr for L dwarfs, and 2.4$_{-0.8}^{+2.4}$ Gyr for T dwarfs, which are consistent with prior simulations that predict that L-type dwarfs are on average a younger and less dispersed population. There is an additional 1-2 Gyr systematic uncertainty on these ages due to variances in age-velocity relations. We use our population simulations to predict the UCD yield in the JWST PASSAGES survey, a similar and deeper survey to WISPS and 3D-HST, and find that it will produce a comparably-sized UCD sample, albeit dominated by thick disk and halo sources.