论文标题
部分可观测时空混沌系统的无模型预测
Accelerated Magnonic Motional Cooling with Deep Reinforcement Learning
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Achieving fast cooling of motional modes is a prerequisite for leveraging such bosonic quanta for high-speed quantum information processing. In this work, we address the aspect of reducing the time limit for cooling below that constrained by the conventional sideband cooling techniques; and propose a scheme to apply deep reinforcement learning (DRL) to achieve this. In particular, we have shown how the scheme can be used effectively to accelerate the dynamic motional cooling of a macroscopic magnonic sphere, and how it can be uniformly extended for more complex systems, for example, a tripartite opto-magno-mechanical system to obtain cooling of the motional mode below the time bound of coherent cooling. While conventional sideband cooling methods do not work beyond the well-known rotating wave approximation (RWA) regimes, our proposed DRL scheme can be applied uniformly to regimes operating within and beyond the RWA, and thus this offers a new and complete toolkit for rapid control and generation of macroscopic quantum states for application in quantum technologies.