论文标题
部分可观测时空混沌系统的无模型预测
Efficient and ultra-stable perovskite light-emitting diodes
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Perovskite light-emitting diodes (PeLEDs) have emerged as a strong contender for next-generation display and information technologies. However, similar to perovskite solar cells, the poor operational stability remains the main obstacle toward commercial applications. Here we demonstrate ultra-stable and efficient PeLEDs with extraordinary operational lifetimes (T50) of 1.0x10^4 h, 2.8x10^4 h, 5.4x10^5 h, and 1.9x10^6 h at initial radiance (or current densities) of 3.7 W/sr/m2 (~5 mA/cm2), 2.1 W/sr/m2 (~3.2 mA/cm2), 0.42 W/sr/m2 (~1.1 mA/cm2), and 0.21 W/sr/m2 (~0.7 mA/cm2) respectively, and external quantum efficiencies of up to 22.8%. Key to this breakthrough is the introduction of a dipolar molecular stabilizer, which serves two critical roles simultaneously. First, it prevents the detrimental transformation and decomposition of the alpha-phase FAPbI3 perovskite, by inhibiting the formation of lead and iodide intermediates. Secondly, hysteresis-free device operation and microscopic luminescence imaging experiments reveal substantially suppressed ion migration in the emissive perovskite. The record-long PeLED lifespans are encouraging, as they now satisfy the stability requirement for commercial organic LEDs (OLEDs). These results remove the critical concern that halide perovskite devices may be intrinsically unstable, paving the path toward industrial applications.