论文标题
部分可观测时空混沌系统的无模型预测
Multi-Modal Few-Shot Object Detection with Meta-Learning-Based Cross-Modal Prompting
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We study multi-modal few-shot object detection (FSOD) in this paper, using both few-shot visual examples and class semantic information for detection, which are complementary to each other by definition. Most of the previous works on multi-modal FSOD are fine-tuning-based which are inefficient for online applications. Moreover, these methods usually require expertise like class names to extract class semantic embedding, which are hard to get for rare classes. Our approach is motivated by the high-level conceptual similarity of (metric-based) meta-learning and prompt-based learning to learn generalizable few-shot and zero-shot object detection models respectively without fine-tuning. Specifically, we combine the few-shot visual classifier and text classifier learned via meta-learning and prompt-based learning respectively to build the multi-modal classifier and detection models. In addition, to fully exploit the pre-trained language models, we propose meta-learning-based cross-modal prompting to generate soft prompts for novel classes present in few-shot visual examples, which are then used to learn the text classifier. Knowledge distillation is introduced to learn the soft prompt generator without using human prior knowledge of class names, which may not be available for rare classes. Our insight is that the few-shot support images naturally include related context information and semantics of the class. We comprehensively evaluate the proposed multi-modal FSOD models on multiple few-shot object detection benchmarks, achieving promising results.