论文标题

部分可观测时空混沌系统的无模型预测

On best uniform approximation of finite sets by linear combinations of real valued functions using linear programming

论文作者

Damelin, Steven B., Werman, Michael

论文摘要

我们研究最佳近似问题:\ [\ displaystyle \ min_ {α\ in \ Mathbb r^m} \ max_ {1 \ leq i \ leq i \ leq n} \ left | y_i - \ sum_ {j = 1} \]这里:$γ:= \ left \ {γ_1,...,γ_m\ right \} $是功能列表,其中每个$ 1 \ leq j \ leq m $,$γ_j:Δ\ rightarrow \ rightarrow \ rightarrow \ rightarrow \ mathbb r $带有$Δ$ guet point $ f in c $ f in c $ f \ ew e \ ew \ bf。 x_n} \ right \} $。 $ \ left \ {y_1,...,y_n \ right \} $是一组真实的值,$ \ mathbb r^m:= \ left \ {(α_1,...,...,...,α_m),\,α_jj\,α_j\ in \ Mathbb r,1 \ leq J \ leq j \ leq j \ leq m \ rigr

We study the best approximation problem: \[ \displaystyle \min_{α\in \mathbb R^m}\max_{1\leq i\leq n}\left|y_i -\sum_{j=1}^m α_j Γ_j ({\bf x}_i) \right|. \] Here: $Γ:=\left\{Γ_1,...,Γ_m\right\}$ is a list of functions where for each $1\leq j\leq m$, $Γ_j:Δ\rightarrow \mathbb R$ with $Δ$ a set of evaluation points $\left\{{\bf x_1},...,{\bf x_n}\right\}$. $\left\{y_1,...,y_n\right\}$ is a set of real values and $\mathbb R^m:=\left\{(α_1,...,α_m),\, α_j\in \mathbb R,\, 1\leq j\leq m\right\}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源