论文标题

与中心计算分区收缩

Counting divisorial contractions with centre a $cA_n$-singularity

论文作者

Paemurru, Erik

论文摘要

首先,我们简化了与中心的三维分区收缩的kawakita和Yamamoto有关的现有分类。接下来,我们描述与给定的局部分析等效类别的分区收缩类别与中心A点相对应的全球代数分区收缩。最后,我们将差异的分区收缩至少为固定品种,并带有$ ca_n $ singularity。我们表明,如果存在一种这样的分区收缩,那么存在许多这样的分区收缩。

First, we simplify the existing classification due to Kawakita and Yamamoto of 3-dimensional divisorial contractions with centre a $cA_n$-singularity, also called compound $A_n$ singularity. Next, we describe the global algebraic divisorial contractions corresponding to a given local analytic equivalence class of divisorial contractions with centre a point. Finally, we consider divisorial contractions of discrepancy at least 2 to a fixed variety with centre a $cA_n$-singularity. We show that if there exists one such divisorial contraction, then there exist uncountably many such divisorial contractions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源