论文标题

在一阶共振链中的共轨道外行星的动力学和潮汐消散的动力学

Dynamics of co-orbital exoplanets in a first order resonance chain with tidal dissipation

论文作者

Couturier, Jérémy, Robutel, Philippe, Correia, Alexandre C. M.

论文摘要

可以在拉普拉斯共振链中形成共轨道行星($ 1:1 $平均运动共振)。在这里,我们开发了一个世俗的模型,以研究共振链$ p:p:p+1 $的动力学,其中共轨道对与最外面的第三行星处于一阶平均运动共振中。我们的模型通过使用恒定的时置模型的使用,考虑到潮汐耗散,该版本扩展了点质量案例的哈密顿形式主义。我们显示了几个平衡家庭的存在,以及这些平衡如何扩展到完整的系统。在我们称为主分支的一个家族中,当添加潮汐消散时,共同轨道的文库频率与欧洲轨道频率之间的世俗共振会产生意外的动态后果。我们报告存在两个不同的机制,这些机制使得共轨道行星在$ p:p:p+1 $共振链中而不是在其外部更加稳定。第一个是由于上述世俗共鸣的区域在线性化系统的特征值的负实际部分引起的。第二个来自矢量场的非线性贡献,这是由于偏心衰减引起的。这两种稳定机制增加了在共晶构型中对外球星的仍能检测的机会。

Co-orbital planets (in a $1:1$ mean motion resonance) can be formed within a Laplace resonance chain. Here, we develop a secular model to study the dynamics of the resonance chain $p:p:p+1$, where the co-orbital pair is in a first-order mean motion resonance with the outermost third planet. Our model takes into account tidal dissipation through the use of a Hamiltonian version of the constant time-lag model, which extends the Hamiltonian formalism of the point-mass case. We show the existence of several families of equilibria, and how these equilibria extend to the complete system. In one family, which we call the main branch, a secular resonance between the libration frequency of the co-orbitals and the precession frequency of the pericentres has unexpected dynamical consequences when tidal dissipation is added. We report the existence of two distinct mechanisms that make co-orbital planets much more stable within the $p:p:p+1$ resonance chain rather than outside it. The first one is due to negative real parts of the eigenvalues of the linearised system with tides, in the region of the secular resonance mentioned above. The second one comes from non-linear contributions of the vector field and it is due to eccentricity damping. These two stabilising mechanisms increase the chances of a still-to-come detection of exoplanets in the co-orbital configuration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源