论文标题
固态合成条件的机器学习合理化和预测
Machine-learning rationalization and prediction of solid-state synthesis conditions
论文作者
论文摘要
目前尚无定量方法来确定固态合成的适当条件。这不仅阻碍了新型材料的实验实现,而且还使人们对固态反应机制的解释和理解变得复杂。在这里,我们演示了一种机器学习方法,该方法使用大型固态合成数据集预测合成条件,这些数据集从科学期刊文章中进行了文本。使用特征重要性排名分析,我们发现最佳加热温度与使用熔点和地层能量定量的前体材料的稳定性($ΔG_F$,$ΔH_F$)具有很强的相关性。相反,源自合成相关反应的热力学的特征与所选的加热温度无直接相关。最佳固态加热温度和前体稳定性之间的这种相关性将Tamman的规则从金属层到氧化物系统扩展,这表明反应动力学在确定合成条件中的重要性。加热时间与所选的实验程序和仪器设置密切相关,这可能表明数据集中的人类偏见。使用这些预测功能,我们构建了具有良好性能和一般适用性的机器学习模型,以预测合成各种化学系统所需的条件。这项工作中使用的代码和数据可以在以下网址找到:https://github.com/cedergrouphub/s4。
There currently exist no quantitative methods to determine the appropriate conditions for solid-state synthesis. This not only hinders the experimental realization of novel materials but also complicates the interpretation and understanding of solid-state reaction mechanisms. Here, we demonstrate a machine-learning approach that predicts synthesis conditions using large solid-state synthesis datasets text-mined from scientific journal articles. Using feature importance ranking analysis, we discovered that optimal heating temperatures have strong correlations with the stability of precursor materials quantified using melting points and formation energies ($ΔG_f$, $ΔH_f$). In contrast, features derived from the thermodynamics of synthesis-related reactions did not directly correlate to the chosen heating temperatures. This correlation between optimal solid-state heating temperature and precursor stability extends Tamman's rule from intermetallics to oxide systems, suggesting the importance of reaction kinetics in determining synthesis conditions. Heating times are shown to be strongly correlated with the chosen experimental procedures and instrument setups, which may be indicative of human bias in the dataset. Using these predictive features, we constructed machine-learning models with good performance and general applicability to predict the conditions required to synthesize diverse chemical systems. Codes and data used in this work can be found at: https://github.com/CederGroupHub/s4.