论文标题
爱因斯坦 - 矢量 - 高斯 - 邦网理论中的对称虫洞
Symmetric wormholes in Einstein-vector-Gauss-Bonnet theory
论文作者
论文摘要
我们在Einstein-Vector-Gauss-Bonnet理论中构建虫洞,其中真正的无质量矢量场与较高的曲率高斯 - 骨网耦合。我们考虑取决于向量场的平方的三个耦合函数。虫洞存在的各个领域具有它们的边界i)黑洞,ii)具有奇异性喉咙的溶液,iii)溶液,溶液具有退化的喉咙和cusp奇异性的iv)溶液。根据耦合功能,虫洞溶液可以具有单个喉咙或赤道,被双喉咙包围。虫洞溶液在喉咙上需要薄的物质壳,以对称地持续到第二个渐近平坦的区域。这些虫洞的空间允许绑定和未结合的粒子运动以及光环。
We construct wormholes in Einstein-vector-Gauss-Bonnet theory where a real massless vector field is coupled to the higher curvature Gauss-Bonnet invariant. We consider three coupling functions which depend on the square of the vector field. The respective domains of existence of wormholes possess as their boundaries i) black holes, ii) solutions with a singular throat, iii) solutions with a degenerate throat and iv) solutions with cusp singularities. Depending on the coupling function wormhole solutions can feature a single throat or an equator surrounded by a double throat. The wormhole solutions need a thin shell of matter at the throat, in order to be symmetrically continued into the second asymptotically flat region. These wormhole spacetimes allow for bound and unbound particle motion as well as light rings.