论文标题

对与偏置线性转换相关的定理通过极坐标

Sampling theorems associated with offset linear canonical transform by polar coordinates

论文作者

Zhao, Hui, Li, Bing-Zhao

论文摘要

极性坐标中带限制功能的偏移线性典型变换的采样定理是信号处理和医学成像许多领域中的重要信号分析工具。这项研究调查了两种抽样定理,用于通过极坐标在OLCT和偏移线性汉克尔变换(OLCHT)域中插值带限制和最高频率的频率限制功能。基于经典的Stark的插值公式,我们分别得出了OLCT和OLCHT域中频率函数的采样定理。第一个插值公式是简洁而适用的。由于OLCHT顺序的一致性,第二个插值公式优于计算复杂性中的第一个插值公式。

The sampling theorem for the offset linear canonical transform (OLCT) of bandlimited functions in polar coordinates is an important signal analysis tool in many fields of signal processing and medical imaging. This study investigates two sampling theorems for interpolating bandlimited and highest frequency bandlimited functions in the OLCT and offset linear canonical Hankel transform (OLCHT) domains by polar coordinates. Based on the classical Stark's interpolation formulas, we derive the sampling theorems for bandlimited functions in the OLCT and OLCHT domains, respectively. The first interpolation formula is concise and applicable. Due to the consistency of the OLCHT order, the second interpolation formula is superior to the first interpolation formula in computational complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源