论文标题

量子波动方法无序$ gw $近似

Quantum fluctuations approach to the nonequilibrium $GW$ approximation

论文作者

Schroedter, Erik, Joost, Jan-Philip, Bonitz, Michael

论文摘要

可以使用两次非平衡绿色功能(NEGF)或单个时间降低密度矩阵方法成功研究了外部激发后的费米或骨气多体系统的量子动力学。通过正确选择BBGKY层次结构的多粒子自能力或脱钩来引入近似值。这些近似值基于Feynman的图方法或群集扩展到单粒子和相关算子中。在这里,我们开发了一种不同的方法,在其中,分析了波动相关函数的单个时间方程,而不是多粒子negf的运动方程式。我们提出了波动替代层次结构的前两个方程的推导,并讨论了可能的分离近似值。特别是,我们得出了偏振近似值(PA),该近似值(PA)等效于单时间版本[以下是非quilibrium $ gw $近似值与negf理论的交换效果的非quilibrium $ gw $近似的广义kadanoff-baym ansatz(gkba)。量子波动方法的主要优点是,标准集合平均值可以用半经典的平均值代替,而不是不同初始实现,正如Lacroix和同事之前所证明的那样[参见例如D. Lacroix等人,物理。 Rev. B,2014,90,125112]。在这里,我们介绍了随机$ GW $(SGW)的近似值和随机极化近似(SPA),这些近似(SPA)被证明等于单期$ gw $近似,而无需分别在弱耦合极限下进行交换。我们的数值测试证实,我们的方法具有与最近开发的G1-G2方案的计算时间相同的有利线性缩放[Schluenzen等,Phys。 Rev. Lett。,2020,124,076601]。

The quantum dynamics of fermionic or bosonic many-body systems following external excitation can be successfully studied using two-time nonequilibrium Green's functions (NEGF) or single-time reduced density matrix methods. Approximations are introduced via a proper choice of the many-particle self-energy or decoupling of the BBGKY hierarchy. These approximations are based on Feynman's diagram approaches or on cluster expansions into single-particle and correlation operators. Here, we develop a different approach where, instead of equations of motion for the many-particle NEGF (or density operators), single-time equations for the correlation functions of fluctuations are analyzed. We present a derivation of the first two equations of the alternative hierarchy of fluctuations and discuss possible decoupling approximations. In particular, we derive the polarization approximation (PA) which is shown to be equivalent to the single-time version [following by applying the generalized Kadanoff-Baym ansatz (GKBA)] of the nonequilibrium $GW$ approximation with exchange effects of NEGF theory, for weak coupling. The main advantage of the quantum fluctuations approach is that the standard ensemble average can be replaced by a semiclassical average over different initial realizations, as was demonstrated before by Lacroix and co-workers [see e.g. D. Lacroix et al., Phys. Rev. B, 2014, 90, 125112]. Here, we introduce the stochastic $GW$ (SGW) approximation and the stochastic polarization approximation (SPA) which are demonstrated to be equivalent to the single-time $GW$ approximation without and with exchange, respectively, in the weak coupling limit. Our numerical tests confirm that our approach has the same favorable linear scaling with the computation time as the recently developed G1-G2 scheme [Schluenzen et al., Phys. Rev. Lett., 2020, 124, 076601].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源