论文标题
推断群集随机实验具有不可忽视的簇尺寸的推断
Inference for Cluster Randomized Experiments with Non-ignorable Cluster Sizes
论文作者
论文摘要
本文认为,当群集大小不可忽略时,群集随机实验的推断问题。在这里,通过群集随机实验,我们的意思是在群集水平上分配治疗的一种。通过不可显着的簇尺寸,我们指的是治疗效果可能非依赖簇大小的可能性。我们将分析在超级人口框架中进行构图,其中集群大小是随机的。这样,我们的分析就偏离了群集随机实验的早期分析,其中群集大小被视为非随机。我们区分了两个不同感兴趣的参数:同样加权的集群级平均治疗效果和大小加权的集群级平均治疗效果。对于每个参数,我们提供在渐近框架中推断的方法,其中簇数倾向于无穷大,并使用协变量自适应分层的随机化程序分配治疗。另外,我们允许实验者仅采样每个集群中的单元的一个子集,而不是整个群集中的一个子集,并证明了这种采样对某些常用估计量的含义。一项小型仿真研究和经验证明表明了我们的理论结果的实际相关性。
This paper considers the problem of inference in cluster randomized experiments when cluster sizes are non-ignorable. Here, by a cluster randomized experiment, we mean one in which treatment is assigned at the cluster level. By non-ignorable cluster sizes, we refer to the possibility that the treatment effects may depend non-trivially on the cluster sizes. We frame our analysis in a super-population framework in which cluster sizes are random. In this way, our analysis departs from earlier analyses of cluster randomized experiments in which cluster sizes are treated as non-random. We distinguish between two different parameters of interest: the equally-weighted cluster-level average treatment effect, and the size-weighted cluster-level average treatment effect. For each parameter, we provide methods for inference in an asymptotic framework where the number of clusters tends to infinity and treatment is assigned using a covariate-adaptive stratified randomization procedure. We additionally permit the experimenter to sample only a subset of the units within each cluster rather than the entire cluster and demonstrate the implications of such sampling for some commonly used estimators. A small simulation study and empirical demonstration show the practical relevance of our theoretical results.