论文标题

针对口腔内扫描仪图像分割的两流图卷积网络

Two-Stream Graph Convolutional Network for Intra-oral Scanner Image Segmentation

论文作者

Zhao, Yue, Zhang, Lingming, Liu, Yang, Meng, Deyu, Cui, Zhiming, Gao, Chenqiang, Gao, Xinbo, Lian, Chunfeng, Shen, Dinggang

论文摘要

从口腔内扫描仪图像对牙齿进行精确分割是计算机辅助正畸手术计划中的重要任务。基于最新的深度学习方法通​​常简单地简单地将网状细胞的原始几何属性(即,坐标和正常向量)串联,以训练单流网络以进行自动内部扫描仪图像分段。但是,由于不同的原始属性揭示了完全不同的几何信息,因此(低级)输入阶段在不同原始属性的幼稚串联可能会在描述和区分网格细胞时引起不必要的混乱,从而妨碍对序列任务的高级几何表示的学习。为了解决这个问题,我们设计了一个两流图卷积网络(即TSGCN),该网络可以有效地处理不同原始属性之间的视图间混淆,以更有效地融合其互补信息并学习歧视性的多视图几何表示。具体而言,我们的TSGCN采用了两个特定的图形学习流,分别从坐标和正常向量提取互补的高级几何表示。然后,这些单视图通过自我发项式模块进一步融合,以适应地平衡不同观点在学习更多歧视性的多视图表示方面的贡献,以进行准确和全自动的牙齿分割。我们已经在3D口内扫描仪获得的牙科(网格)模型的实际患者数据集上评估了我们的TSGCN。实验结果表明,我们的TSGCN在3D牙齿(表面)分割中明显胜过最先进的方法。 github:https://github.com/zhanglingming1/tsgcnet。

Precise segmentation of teeth from intra-oral scanner images is an essential task in computer-aided orthodontic surgical planning. The state-of-the-art deep learning-based methods often simply concatenate the raw geometric attributes (i.e., coordinates and normal vectors) of mesh cells to train a single-stream network for automatic intra-oral scanner image segmentation. However, since different raw attributes reveal completely different geometric information, the naive concatenation of different raw attributes at the (low-level) input stage may bring unnecessary confusion in describing and differentiating between mesh cells, thus hampering the learning of high-level geometric representations for the segmentation task. To address this issue, we design a two-stream graph convolutional network (i.e., TSGCN), which can effectively handle inter-view confusion between different raw attributes to more effectively fuse their complementary information and learn discriminative multi-view geometric representations. Specifically, our TSGCN adopts two input-specific graph-learning streams to extract complementary high-level geometric representations from coordinates and normal vectors, respectively. Then, these single-view representations are further fused by a self-attention module to adaptively balance the contributions of different views in learning more discriminative multi-view representations for accurate and fully automatic tooth segmentation. We have evaluated our TSGCN on a real-patient dataset of dental (mesh) models acquired by 3D intraoral scanners. Experimental results show that our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation. Github: https://github.com/ZhangLingMing1/TSGCNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源