论文标题

双曲线表面同源生长速率的多重分析分析

Multifractal analysis of homological growth rates for hyperbolic surfaces

论文作者

Jaerisch, Johannes, Takahasi, Hiroki

论文摘要

我们对双曲线表面的定向大地测量学的同源生长速率进行多重分析。我们的主要结果为紫红色集团的普遍庞加莱指数而言,为豪斯多夫的高度集合提供了一个公式。我们采用鲍恩(Bowen)和系列(ergodic Theory)开发的符号动力学,千古理论和热力学形式主义,以证明维度谱的分析性。

We perform a multifractal analysis of homological growth rates of oriented geodesics on hyperbolic surfaces. Our main result provides a formula for the Hausdorff dimension of level sets of prescribed growth rates in terms of a generalized Poincaré exponent of the Fuchsian group. We employ symbolic dynamics developed by Bowen and Series, ergodic theory and thermodynamic formalism to prove the analyticity of the dimension spectrum.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源