论文标题
使用Lyapunov指数
Geodesic stability and quasinormal modes of non-commutative Schwarzschild black hole employing Lyapunov exponent
论文作者
论文摘要
我们研究了非交通性几何学启发的Schwarzschild黑洞时空(NCSBH)在重力场中圆形大地测量学的稳定性的动力学。坐标时间lyapunov指数($λ_{C} $)对于研究大规模和无质量测试颗粒的赤道圆形测量学的稳定性至关重要。通过分析具有这些轨道半径的lyapunov指数的变化来讨论圆轨道的稳定性或不稳定性,这些轨道的变化对于不同的非交换参数值($α$)。对于无圆轨道的情况,计算并提出了不稳定性指数,以讨论无圆轨道的不稳定性。此外,通过将对应于零圆形测量学的参数(即角频率和lyapunov指数),对艾克尼尔近似值中无质量标量场扰动的准模式(QNM)进行了评估,并通过关联实际和想象的部分来可视化。还观察到并讨论了标量场电位的性质,即改变非交换性参数($α$)和角度动量($ L $)。
We study the dynamics of test particle and stability of circular geodesics in the gravitational field of a non-commutative geometry inspired Schwarzschild black hole spacetime (NCSBH). The coordinate time Lyapunov exponent ($λ_{c}$) is crucial to investigate the stability of equatorial circular geodesics of massive and massless test particles. The stability or instability of circular orbits are discussed by analysing the variation of Lyapunov exponent with radius of these orbits for different values of non-commutative parameter ($α$). In the case of null circular orbits, the instability exponent is calculated and presented to discuss the instability of null circular orbits. Further, by relating parameters corresponding to null circular geodesics (i.e. angular frequency and Lyapunov exponent), the quasinormal modes (QNMs) for a massless scalar field perturbation in the eikonal approximation are evaluated, and also visualised by relating the real and imaginary parts. The nature of scalar field potential, by varying the non-commutative parameter ($α$) and angular momentum of perturbation ($l$), are also observed and discussed.