论文标题

Kneser和Schrijver问题的固定参数算法

Fixed-Parameter Algorithms for the Kneser and Schrijver Problems

论文作者

Haviv, Ishay

论文摘要

neser Graph $ k(n,k)$定义为整数$ n $和$ k $,带有$ n \ geq 2k $作为图形,其顶点都是$ k $ -subsets $ [n] = \ {1,2,\ ldots,n \} $,如果有两个这样的设置在彼此相邻的情况下, Schrijver Graph $ s(n,k)$定义为$ k(n,k)$的子图,由所有$ k $ subsets的$ [n] $的集合所诱导的,这些$ [n] $不包括两个连续的元素模拟$ n $。众所周知,$ k(n,k)$和$ s(n,k)$的色度为$ n-2k+2 $。 在计算旋转和Schrijver问题中,我们可以访问$ k(n,k)$和$ s(n,k)$的$ n-2k+1 $颜色的着色,目标是找到单色边缘。我们证明,这些问题允许使用运行时间的随机算法$ n^{o(1)} \ cdot k^{o(k)} $,因此相对于参数$ k $,它们是可固定参数的。该分析涉及相交家族和诱导的kneser和Schrijver图的诱导子图的结构结果。 我们还研究了为一组$ m $项目分配给一组$ \ ell $ $ $ agents的一小部分的令人满意的问题,以便所有代理商对子集的重视程度至少与其补充一样多。作为我们算法在旋塞问题中的应用,我们为使用$ \ ell \ geq m-o(\ frac {\ frac {\ log m} {\ log log \ log \ log \ log \ log \ m}的实例获得了一个随机的多项式时间算法。我们进一步表明,可满足的问题至少与Kneser问题的变体一样困难,并扩展了对输入着色的访问。

The Kneser graph $K(n,k)$ is defined for integers $n$ and $k$ with $n \geq 2k$ as the graph whose vertices are all the $k$-subsets of $[n]=\{1,2,\ldots,n\}$ where two such sets are adjacent if they are disjoint. The Schrijver graph $S(n,k)$ is defined as the subgraph of $K(n,k)$ induced by the collection of all $k$-subsets of $[n]$ that do not include two consecutive elements modulo $n$. It is known that the chromatic number of both $K(n,k)$ and $S(n,k)$ is $n-2k+2$. In the computational Kneser and Schrijver problems, we are given an access to a coloring with $n-2k+1$ colors of the vertices of $K(n,k)$ and $S(n,k)$ respectively, and the goal is to find a monochromatic edge. We prove that the problems admit randomized algorithms with running time $n^{O(1)} \cdot k^{O(k)}$, hence they are fixed-parameter tractable with respect to the parameter $k$. The analysis involves structural results on intersecting families and on induced subgraphs of Kneser and Schrijver graphs. We also study the Agreeable-Set problem of assigning a small subset of a set of $m$ items to a group of $\ell$ agents, so that all agents value the subset at least as much as its complement. As an application of our algorithm for the Kneser problem, we obtain a randomized polynomial-time algorithm for the Agreeable-Set problem for instances with $\ell \geq m - O(\frac{\log m}{\log \log m})$. We further show that the Agreeable-Set problem is at least as hard as a variant of the Kneser problem with an extended access to the input coloring.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源