论文标题

空间采样对磁场建模和螺旋度计算的影响

The effect of spatial sampling on magnetic field modeling and helicity computation

论文作者

Thalmann, J. K., Gupta, Manu, Veronig, A. M.

论文摘要

定期使用非线性力(NLFF)建模,以间接推断冠状磁场的3D几何形状,否则无法通过直接测量来定期访问。我们研究了时间序列中单个活动区域(ARS)的NLFF建模的效果,以量化不同基础空间采样对建模质量以及对派生物理参数的影响。我们将优化方法应用于三个太阳ARS的三个不同板尺度的SDO/HMI矢量磁图数据的序列,以获得9个NLFF模型时间序列。从NLFF模型中,我们推断了活动区域磁通量,电流,磁能和相对螺旋度,并相对于基本的空间采样分析了那些。我们计算各种指标来量化派生的NLFF模型的质量,并应用Helmholtz分解以表征电磁误差。在给定的空间采样下,不同AR的NLFF建模质量不同,并且在单个模型时间序列的情况下也有所不同。对于给定的AR,在给定的空间采样上进行建模不一定比具有不同板尺度进行的质量高。通常,对于较大的像素尺寸,NLFF模型质量往往更高,而螺线管质量是模型降低的物理量系统变化的最终原因。基于BINNED SDO/HMI矢量数据基于优化的建模可提供磁能,而螺旋度估计$ \ sillesim $ 30 \%,鉴于简洁的检查确保了测试模型的物理合理性和高螺线管质量。因此,与其他不确定性来源相比,空间采样引起的差异相对较小。

Nonlinear force-free (NLFF) modeling is regularly used in order to indirectly infer the 3D geometry of the coronal magnetic field, not accessible on a regular basis by means of direct measurements otherwise. We study the effect of binning in time series NLFF modeling of individual active regions (ARs) in order to quantify the effect of a different underlying spatial sampling on the quality of modeling as well as on the derived physical parameters. We apply an optimization method to sequences of SDO/HMI vector magnetogram data at three different plate scales for three solar ARs to obtain nine NLFF model time series. From the NLFF models, we deduce active-region magnetic fluxes, electric currents, magnetic energies and relative helicities, and analyze those with respect to the underlying spatial sampling. We calculate various metrics to quantify the quality of the derived NLFF models and apply a Helmholtz decomposition to characterize solenoidal errors. At a given spatial sampling, the quality of NLFF modeling is different for different ARs, as well as varies along of the individual model time series. For a given AR, modeling at a given spatial sampling is not necessarily of superior quality compared to that performed with a different plate scale. Generally, the NLFF model quality tends to be higher for larger pixel sizes with the solenoidal quality being the ultimate cause for systematic variations in model-deduced physical quantities. Optimization-based modeling based on binned SDO/HMI vector data delivers magnetic energies and helicity estimates different by $\lesssim$30\%, given that concise checks ensure the physical plausibility and high solenoidal quality of the tested model. Thus, spatial-sampling-induced differences are relatively small compared to that arising from other sources of uncertainty.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源