论文标题

通过深度子空间编码对动态空间模型的连续时间识别

Continuous-time identification of dynamic state-space models by deep subspace encoding

论文作者

Beintema, Gerben I., Schoukens, Maarten, Tóth, Roland

论文摘要

事实证明,连续时间(CT)建模可提供提高样品效率和解释性,以学习与离散时间(DT)模型相比,学习物理系统的动力学行为。但是,即使有许多最近的发展,CT非线性状态空间(NL-SS)模型识别问题仍有待解决,考虑到常见的实验方面,例如外部投入,测量噪声,潜在状态和一般鲁棒性。本文提出了一种新的估计方法,该方法解决了所有这些方面,并且可以在具有紧凑的完全连接的神经网络捕获CT动力学的完全连接的神经网络上获得最先进的结果。提出的估计方法称为子空间编码器方法(子网)通过使用编码器函数来估计每个细胞小节的初始状态,并确保稳定性和良好的训练过程的数字条件,从而有效地评估了数据的初始状态,从而有效地评估了数据的初始状态,从而有效地估算了数据小节的简短模拟来确定这些结果。我们证明,小节的使用增加了成本函数的平滑度以及对编码器函数的必要要求,并且我们表明,所提出的状态衍生品归一化对于可靠的CT NL-SS模型的可靠估计至关重要。

Continuous-time (CT) modeling has proven to provide improved sample efficiency and interpretability in learning the dynamical behavior of physical systems compared to discrete-time (DT) models. However, even with numerous recent developments, the CT nonlinear state-space (NL-SS) model identification problem remains to be solved in full, considering common experimental aspects such as the presence of external inputs, measurement noise, latent states, and general robustness. This paper presents a novel estimation method that addresses all these aspects and that can obtain state-of-the-art results on multiple benchmarks with compact fully connected neural networks capturing the CT dynamics. The proposed estimation method called the subspace encoder approach (SUBNET) ascertains these results by efficiently approximating the complete simulation loss by evaluating short simulations on subsections of the data, by using an encoder function to estimate the initial state for each subsection and a novel state-derivative normalization to ensure stability and good numerical conditioning of the training process. We prove that the use of subsections increases cost function smoothness together with the necessary requirements for the existence of the encoder function and we show that the proposed state-derivative normalization is essential for reliable estimation of CT NL-SS models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源