论文标题

polyhedra近似riemannian歧管

Approximating Riemannian manifolds by polyhedra

论文作者

Meyer, Daniel, Toubiana, Eric

论文摘要

这是一项关于近似Polyhedra近似Riemannian歧管的研究。我们的范围是理解塔利奥·雷格(Tullio Regge)在受限制的里曼尼(Riemannian)框架中的[52]文章。我们给出了沿其原始直觉的线的regge定理的证明:一个人可以通过polyhedra近似riemannian歧管的紧凑型域,以使标量曲率的积分通过相应的多面体曲率近似。

This is a study on approximating a Riemannian manifold by polyhedra. Our scope is understanding Tullio Regge's [52] article in the restricted Riemannian frame. We give a proof of the Regge theorem along lines close to its original intuition: one can approximate a compact domain of a Riemannian manifold by polyhedra in such a way that the integral of the scalar curvature is approximated by a corresponding polyhedral curvature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源