论文标题
在两个维度和三个维度中的多尔达功能点散射体重新归一化,重合限制问题及其分辨率
Renormalization of multi-delta-function point scatterers in two and three dimensions, the coincidence-limit problem, and its resolution
论文作者
论文摘要
在两个维度和三个维度中,散射问题的标准处理具有多型功能潜力的$ V(\ MathBf {r})= \ sum_ {n = 1}^n \ Mathfrak {z}_nδ(\ Mathbf {r} - {r} - \ Mathbf {r} - \ Mathbf {a a} a} _n)这些术语的正则化和耦合常数的重新规则化$ \ mathfrak {z} _n $引起了该潜力散射幅度的有限表达,但是该表达式具有重要的缩写;在Delta功能的中心$ \ Mathbf {a} _n $相吻合的限制中,它不会重现单个函数功能潜力的散射幅度的公式,即,它似乎具有错误的巧合限制。我们对这些潜力的标准处理进行了批判性评估,并提供了解决其巧合限制问题的解决方案。这揭示了这种治疗的一些以前未知的特征。例如,事实证明,标准处理无法确定散射幅度对三角洲函数中心之间距离的依赖性。这与最近提出的固定散射的动力学表述所提供的该问题的处理形成鲜明对比。对于三角洲函数中心在直线上的情况,该公式避免了标准方法的奇异性,并产生具有正确巧合极限的散射幅度的表达。
In two and three dimensions, the standard treatment of the scattering problem for a multi-delta-function potential, $v(\mathbf{r})=\sum_{n=1}^N\mathfrak{z}_nδ(\mathbf{r}-\mathbf{a}_n)$, leads to divergent terms. Regularization of these terms and renormalization of the coupling constants $\mathfrak{z}_n$ give rise to a finite expression for the scattering amplitude of this potential, but this expression has an important short-coming; in the limit where the centers $\mathbf{a}_n$ of the delta functions coincide, it does not reproduce the formula for the scattering amplitude of a single-delta-function potential, i.e., it seems to have a wrong coincidence limit. We provide a critical assessment of the standard treatment of these potentials and offer a resolution of its coincidence-limit problem. This reveals some previously unnoticed features of this treatment. For example, it turns out that the standard treatment is incapable of determining the dependence of the scattering amplitude on the distances between the centers of the delta functions. This is in sharp contrast to the treatment of this problem offered by a recently proposed dynamical formulation of stationary scattering. For cases where the centers of the delta functions lie on a straight line, this formulation avoids singularities of the standard approach and yields an expression for the scattering amplitude which has the correct coincidence limit.