论文标题

跨视图大脑解码

Cross-view Brain Decoding

论文作者

Oota, Subba Reddy, Arora, Jashn, Gupta, Manish, Bapi, Raju S.

论文摘要

大脑如何在多种视图中捕获语言刺激的含义仍然是神经科学中的关键开放问题。考虑该概念公寓的三种不同视图:(1)使用目标单词呈现目标单词标签,(2)句子的图片(WP),以及(3)包含目标单词的单词云(WC)以及其他与语义相关的单词。与以前仅着眼于单一视图分析的努力不同,在本文中,我们研究了零射击跨视图学习设置中大脑解码的有效性。此外,我们建议在跨视图翻译任务的新颖背景下进行大脑解码,例如图像字幕(IC),图像标记(IT),关键字提取(KE)和句子形成(SF)。使用广泛的实验,我们证明了跨视图零拍脑解码是实用的,导致跨视图对的平均成对精度约为0.68。同样,对解码的表示形式进行了足够的详细介绍,以使跨视图翻译任务具有以下成对精度的高精度:IC(78.0),IT(83.0),KE(83.7)和SF(74.5)。对不同大脑网络的贡献的分析揭示了令人兴奋的认知见解:(1)图像字幕和图像标记任务中有很大比例的视觉体素涉及,并且句子形成和关键字提取任务中涉及的语言体素很高。 (2)在S视图上训练并在WC视图上测试的模型的零射击精度比在WC视图上训练和测试的模型的同一视图精度要好。

How the brain captures the meaning of linguistic stimuli across multiple views is still a critical open question in neuroscience. Consider three different views of the concept apartment: (1) picture (WP) presented with the target word label, (2) sentence (S) using the target word, and (3) word cloud (WC) containing the target word along with other semantically related words. Unlike previous efforts, which focus only on single view analysis, in this paper, we study the effectiveness of brain decoding in a zero-shot cross-view learning setup. Further, we propose brain decoding in the novel context of cross-view-translation tasks like image captioning (IC), image tagging (IT), keyword extraction (KE), and sentence formation (SF). Using extensive experiments, we demonstrate that cross-view zero-shot brain decoding is practical leading to ~0.68 average pairwise accuracy across view pairs. Also, the decoded representations are sufficiently detailed to enable high accuracy for cross-view-translation tasks with following pairwise accuracy: IC (78.0), IT (83.0), KE (83.7) and SF (74.5). Analysis of the contribution of different brain networks reveals exciting cognitive insights: (1) A high percentage of visual voxels are involved in image captioning and image tagging tasks, and a high percentage of language voxels are involved in the sentence formation and keyword extraction tasks. (2) Zero-shot accuracy of the model trained on S view and tested on WC view is better than same-view accuracy of the model trained and tested on WC view.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源