论文标题

SLOCC分类的纯置换对称三量态的几何图片

Geometric picture for SLOCC classification of pure permutation symmetric three-qubit states

论文作者

Anjali, K., Reena, I., Sudha, Divyamani, B. G., Karthik, H. S., Mallesh, K. S., Devi, A. R. Usha

论文摘要

我们表明,在随机局部操作和阶级交流(SLOCC)下,纯净的三量对称状态在Bloch球体内的球体方面表现出独特的几何表示。我们提供了从纠缠三Q Quit的纯对称状态提取的还原的两量态状态的SLOCC规范形式的详细分析。基于这些状态的洛伦兹规范形式,我们得出了两种不同的几何表示:(i)一个以bloch球体起源为中心的pr酸球体 - 沿着z方向(球形的对称轴)等于1-等于1-等于1-在纯度固定的三分之一的旋转状态(II)(II)(II)(II)(II)(II)(IR在Bloch球体内,具有固定的半肌长度(1/sqrt {2},1/sqrt {2},1/2),当三个Qubit纯状态通过2个不同的旋转器的对称构建时。

We show that the pure entangled three-qubit symmetric states which are inequivalent under stochastic local operations and classcial communication (SLOCC) exhibit distinct geometric representation in terms of a spheroid inscribed within the Bloch sphere. We provide detailed analysis of the SLOCC canonical forms of the reduced two-qubit states extracted from entangled three-qubit pure symmetric states. Based on the Lorentz canonical forms of these states we arrive at two different geometrical representations: (i) a prolate spheroid centered at the origin of the Bloch sphere -- with longest semiaxis along the z-direction (symmetry axis of the spheroid) equal to 1 -- in the case of pure permutation symmetric three-qubit states constructed from 3 distinct spinors and (ii) a spheroid centered at (0,0,1/2) inside the Bloch sphere, with fixed semiaxes lengths (1/sqrt{2}, 1/sqrt{2}, 1/2) when the three-qubit pure state is constructed via symmetrization of 2 distinct spinors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源