论文标题
湍流理论(i)的磁场强度:使用差分测量方法(DMA)
Magnetic field strength from turbulence theory (I): Using differential measure approach (DMA)
论文作者
论文摘要
传统上,使用Davis-Chandrasekhar-Fermi(DCF)技术从极化和光谱数据的组合获得了平均水平的磁场强度。但是,我们确定DCF的主要问题是它无视MHD湍流的各向异性特征。在现代MHD湍流理论的基础上,我们引入了一种从观察值获得磁场强度的新方法。与DCF不同,新技术不使用极化角度和视线速度的分散,而是结构函数给出的这些数量的增量。为了解决可以应用我们的技术的天体物理条件的种类,我们考虑两种介质中的湍流都大于相对的气压,例如到分子和气压大于对应于温暖中性培养基的磁压。我们为这些媒体中的AlfVén,慢速和快速模式的任意混合提供了一般表达,并详细考虑了与扩散培养基和分子云相关的特定情况。我们使用从MHD湍流模拟获得的合成观察成功测试了结果。我们证明,与DCF不同的差异测量方法(DMA)可用于测量磁场强度的分布,可以提供磁场测量值有限的数据,并且在存在大规模变化的情况下诱导非扰动性质的情况更加稳定。同时,我们的研究发现了早期DCF研究的缺陷。
The mean plane-of-sky magnetic field strength is traditionally obtained from the combination of polarization and spectroscopic data using the Davis-Chandrasekhar-Fermi (DCF) technique. However, we identify the major problem of the DCF to be its disregard of the anisotropic character of MHD turbulence. On the basis of the modern MHD turbulence theory we introduce a new way of obtaining magnetic field strength from observations. Unlike the DCF, the new technique uses not the dispersion of the polarization angle and line of sight velocities, but increments of these quantities given by the structure functions. To address the variety of the astrophysical conditions for which our technique can be applied, we consider the turbulence in both media with magnetic pressure larger than the gas pressure corresponding e.g. to molecular and the gas pressure larger than the magnetic pressure corresponding to the warm neutral medium. We provide general expressions for arbitrary admixture of Alfvén, slow and fast modes in these media and consider in detail the particular cases relevant to diffuse media and molecular clouds. We successfully test our results using synthetic observations obtained from MHD turbulence simulations. We demonstrate that our Differential Measure Approach (DMA), unlike the DCF, can be used to measure the distribution of magnetic field strengths, can provide magnetic field measurements with limited data and is much more stable in the presence of large scale variations induces of non-turbulent nature. In parallel, our study uncover the deficiencies of the earlier DCF research.