论文标题

使用无监督功能的学习方法在复合面板中进行分层预测

Delamination prediction in composite panels using unsupervised-feature learning methods with wavelet-enhanced guided wave representations

论文作者

Rautela, Mahindra, Senthilnath, J., Monaco, Ernesto, Gopalakrishnan, S.

论文摘要

随着基于损害的设计理念的引入,对航空航天复合结构的可靠结构健康监测(SHM)程序的需求正在迅速增加。 SHM的监督学习算法的性能取决于标记和平衡数据集的数量。除此之外,收集满足所有可能损坏情况的数据集是繁琐的,昂贵的,并且无法进入航空航天应用程序。在本文中,我们提出了两种不同的无监督学习方法,其中仅在基线场景上训练算法以了解基线信号的分布。训练有素的无监督功能学习者用于具有异常检测理念的分层预测。在第一种方法中,我们将减少维度降低技术(主要组件分析和独立组件分析)与一级支持向量机组合在一起。在另一种方法中,我们利用了基于深度学习的深度卷积自动编码器(CAE)。这些最新的算法应用于三个不同的基于引导波的实验数据集。数据集中存在的原始引导波信号转换为训练无监督的特征学习算法的小波增强的高阶表示。我们还比较了不同的技术,并且可以看出CAE会生成均值较低的平方误差的更好的重建,并且可以在所有数据集上提供更高的精度。

With the introduction of damage tolerance-based design philosophies, the demand for reliable and robust structural health monitoring (SHM) procedures for aerospace composite structures is increasing rapidly. The performance of supervised learning algorithms for SHM depends on the amount of labeled and balanced datasets. Apart from this, collecting datasets accommodating all possible damage scenarios is cumbersome, costly, and inaccessible for aerospace applications. In this paper, we have proposed two different unsupervised-feature learning approaches where the algorithms are trained only on the baseline scenarios to learn the distribution of baseline signals. The trained unsupervised feature learner is used for delamination prediction with an anomaly detection philosophy. In the first approach, we have combined dimensionality reduction techniques (principal component analysis and independent component analysis) with a one-class support vector machine. In another approach, we have utilized deep learning-based deep convolutional autoencoders (CAE). These state-of-the-art algorithms are applied on three different guided wave-based experimental datasets. The raw guided wave signals present in the datasets are converted into wavelet-enhanced higher-order representations for training unsupervised feature-learning algorithms. We have also compared different techniques, and it is seen that CAE generates better reconstructions with lower mean squared error and can provide higher accuracy on all the datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源