论文标题

基于梯度变换的多聚焦图像融合

Multi-Focus Image Fusion based on Gradient Transform

论文作者

Turgut, Sultan Sevgi, Oral, Mustafa

论文摘要

多聚焦图像融合是一个充满挑战的研究领域,旨在通过整合集中专注和非关注的像素来提供完全集中的图像。大多数现有方法都遭受转移差异,不易登记的图像和数据依赖性的障碍。在这项研究中,我们介绍了一种基于梯度信息的新型多聚焦图像融合方法,该方法适合上述问题。所提出的方法首先使用Halftoning Inverse Halftoning(H-IH)变换从原始图像中生成渐变图像。然后,将梯度(EOG)和标准偏差函数的能量用作对梯度图像的焦点测量,以形成融合图像。最后,为了增强融合图像,使用多数投票方法应用了决策融合方法。在视觉和客观上将提出的方法与17种不同的新颖和常规技术进行比较。为了进行客观评估,使用6种不同的定量指标。据观察,根据视觉评估,所提出的方法有希望,并且根据客观评估中的六个指标中的五分之五,获得了83.3%的成功。

Multi-focus image fusion is a challenging field of study that aims to provide a completely focused image by integrating focused and un-focused pixels. Most existing methods suffer from shift variance, misregistered images, and data-dependent. In this study, we introduce a novel gradient information-based multi-focus image fusion method that is robust for the aforementioned problems. The proposed method first generates gradient images from original images by using Halftoning-Inverse Halftoning (H-IH) transform. Then, Energy of Gradient (EOG) and Standard Deviation functions are used as the focus measurement on the gradient images to form a fused image. Finally, in order to enhance the fused image a decision fusion approach is applied with the majority voting method. The proposed method is compared with 17 different novel and conventional techniques both visually and objectively. For objective evaluation, 6 different quantitative metrics are used. It is observed that the proposed method is promising according to visual evaluation and 83.3% success is achieved by being first in five out of six metrics according to objective evaluation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源