论文标题

Selma:在可变天气,白天和观点中的语义大规模多模式采集

SELMA: SEmantic Large-scale Multimodal Acquisitions in Variable Weather, Daytime and Viewpoints

论文作者

Testolina, Paolo, Barbato, Francesco, Michieli, Umberto, Giordani, Marco, Zanuttigh, Pietro, Zorzi, Michele

论文摘要

从汽车上安装的多个传感器的准确理解是自动驾驶系统的关键要求。如今,这项任务主要是通过渴望数据的深度学习技术执行的,这些技术需要大量的数据培训。由于执行分割标签的高成本,已经提出了许多合成数据集。但是,他们中的大多数都错过了数据的多传感器性质,并且不会捕获白天和天气状况的变化所带来的重大变化。为了填补这些空白,我们介绍了Selma,这是一种新型的合成数据集,用于语义分割,其中包含从27个不同的大气和白天条件下的24个不同传感器中获取的超过30k独特的航路点,包括RGB,深度,语义相机和激光镜头,总计超过20M。塞尔玛(Selma)基于Carla,Carla是一种开源模拟器,用于在自主驾驶场景中生成合成数据,我们对其进行了修改,以提高场景和类集合中的可变性和多样性,并将其与其他基准数据集保持一致。如实验评估所示,SELMA允许对标准和多模式深度学习体系结构进行有效训练,并在现实世界数据上取得了显着的结果。塞尔玛是免费的,公开的,因此支持开放科学和研究。

Accurate scene understanding from multiple sensors mounted on cars is a key requirement for autonomous driving systems. Nowadays, this task is mainly performed through data-hungry deep learning techniques that need very large amounts of data to be trained. Due to the high cost of performing segmentation labeling, many synthetic datasets have been proposed. However, most of them miss the multi-sensor nature of the data, and do not capture the significant changes introduced by the variation of daytime and weather conditions. To fill these gaps, we introduce SELMA, a novel synthetic dataset for semantic segmentation that contains more than 30K unique waypoints acquired from 24 different sensors including RGB, depth, semantic cameras and LiDARs, in 27 different atmospheric and daytime conditions, for a total of more than 20M samples. SELMA is based on CARLA, an open-source simulator for generating synthetic data in autonomous driving scenarios, that we modified to increase the variability and the diversity in the scenes and class sets, and to align it with other benchmark datasets. As shown by the experimental evaluation, SELMA allows the efficient training of standard and multi-modal deep learning architectures, and achieves remarkable results on real-world data. SELMA is free and publicly available, thus supporting open science and research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源