论文标题

Pan-Starrs1中等深度调查的光学分类的超浮肿超新星:基于机器学习的分类的科学案例研究

Photometrically-Classified Superluminous Supernovae from the Pan-STARRS1 Medium Deep Survey: A Case Study for Science with Machine Learning-Based Classification

论文作者

Hsu, Brian, Hosseinzadeh, Griffin, Villar, V. Ashley, Berger, Edo

论文摘要

随着即将进行的Vera C.〜Rubin天文台对空间和时间(LSST)的调查,预计所有瞬态中只有$ \ sim 0.1 \%$将通过光谱进行分类。为了进行稀有瞬态的研究,例如I型超小型超新星(SLSNE),我们必须依靠光度分类。在这种情况下,我们在Pan-Starrs1中学调查(PS1-MDS)的SLSNE进行了对SUPERRAENN和SUPERRAENN和SUPERPHOT算法的光学分类的SLSNE进行试点研究。我们首先使用旨在最大程度降低污染并确保足够的建模数据质量的简单选择指标列表来构建光度法样本的子样本。然后,我们使用模块化开源式插件(MOSFIT)使用磁性旋转模型拟合多带光曲线。将光度法样品与PS1-MDS光谱样品和较大的文献光谱样品的磁力发动机和射引擎分布进行比较,我们发现这些样品总体上是一致的,但是光度法将扩展到较慢的旋转和较低的EXTA质量,而较低的eXTA质量对应于较低的光度事件,如预期的光度值所提供的。尽管我们的PS1-MDS光度样品仍然小于总体SLSN光谱样品,但我们的方法论通过光度法选择和研究,在LSST时代,SLSN样本中降低的阶数铺平了道路。

With the upcoming Vera C.~Rubin Observatory Legacy Survey of Space and Time (LSST), it is expected that only $\sim 0.1\%$ of all transients will be classified spectroscopically. To conduct studies of rare transients, such as Type I superluminous supernovae (SLSNe), we must instead rely on photometric classification. In this vein, here we carry out a pilot study of SLSNe from the Pan-STARRS1 Medium-Deep Survey (PS1-MDS) classified photometrically with our SuperRAENN and Superphot algorithms. We first construct a sub-sample of the photometric sample using a list of simple selection metrics designed to minimize contamination and ensure sufficient data quality for modeling. We then fit the multi-band light curves with a magnetar spin-down model using the Modular Open-Source Fitter for Transients (MOSFiT). Comparing the magnetar engine and ejecta parameter distributions of the photometric sample to those of the PS1-MDS spectroscopic sample and a larger literature spectroscopic sample, we find that these samples are overall consistent, but that the photometric sample extends to slower spins and lower ejecta masses, which correspond to lower luminosity events, as expected for photometric selection. While our PS1-MDS photometric sample is still smaller than the overall SLSN spectroscopic sample, our methodology paves the way to an orders-of-magnitude increase in the SLSN sample in the LSST era through photometric selection and study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源