论文标题
最低特征值的螺旋磁场和半古典渐近线
Helical magnetic fields and semi-classical asymptotics of the lowest eigenvalue
论文作者
论文摘要
我们在存在半古典参数和具有恒定强度的非均匀磁场的情况下研究3D Neuman磁拉曲板。我们确定了最低特征值的尖锐的两学期渐近学,其中第二项涉及与磁场和域的几何形状相关的数量。在单位球和螺旋磁场的特殊情况下,浓度发生在单位球的两个对称点上。
We study the 3D Neuman magnetic Laplacian in the presence of a semi-classical parameter and a non-uniform magnetic field with constant intensity. We determine a sharp two term asymptotics for the lowest eigenvalue, where the second term involves a quantity related to the magnetic field and the geometry of the domain. In the special case of the unit ball and a helical magnetic field, the concentration takes place on two symmetric points of the unit sphere.