论文标题
拓扑约瑟夫森连接的运输理论与Majoraana Qubit
Transport theory for topological Josephson junctions with a Majorana qubit
论文作者
论文摘要
我们构建了一种半经典理论,用于从微观的哈密顿量开始的拓扑结构的运输,该拓扑结构全面包括Majorana Qubit,Josephson阶段和耗散过程之间的相互作用。使用路径积分方法,我们得出了一组半经典运动方程,可用于计算约瑟夫森阶段和majoraga量子的时间演化。在方程式中,我们揭示了丰富的动力学现象,例如Qubit诱导的电荷泵,有效的自旋轨道扭矩和吉尔伯特阻尼。我们证明了这些动态现象对结的运输特征的影响。我们将理论应用于研究结的夏皮罗步骤,并由于Majorana Qubit的动态反馈而找到了对第一个Shapiro步骤的抑制。
We construct a semiclassical theory for the transport of topological junctions starting from a microscopic Hamiltonian that comprehensively includes the interplay among the Majorana qubit, the Josephson phase, and the dissipation process. With the path integral approach, we derive a set of semiclassical equations of motion that can be used to calculate the time evolution of the Josephson phase and the Majorana qubit. In the equations we reveal rich dynamical phenomena such as the qubit induced charge pumping, the effective spin-orbit torque, and the Gilbert damping. We demonstrate the influence of these dynamical phenomena on the transport signatures of the junction. We apply the theory to study the Shapiro steps of the junction, and find the suppression of the first Shapiro step due to the dynamical feedback of the Majorana qubit.