论文标题

具有规定的最低理性切线的Metabelian Lie群体的部分压实

Partial compactification of metabelian Lie groups with prescribed varieties of minimal rational tangents

论文作者

Hwang, Jun-Muk

论文摘要

我们研究了与分布相切的复杂歧管上的最小有理曲线。在这种情况下,相对于分布的Levi张量,必须各种最小有理切线(VMRT)是各向同性的。我们的主要结果是与此相反:相对于矢量值抗对称形式的任何平滑的射击各向同性变化都可以实现为与复杂歧管上分布的最小有理曲线的VMRT。复杂的歧管被构造为一组族群的部分模棱两可的压实,这是独立利益的结果。

We study minimal rational curves on a complex manifold that are tangent to a distribution. In this setting, the variety of minimal rational tangents (VMRT) has to be isotropic with respect to the Levi tensor of the distribution. Our main result is a converse of this: any smooth projective variety isotropic with respect to a vector-valued anti-symmetric form can be realized as VMRT of minimal rational curves tangent to a distribution on a complex manifold. The complex manifold is constructed as a partial equivariant compactification of a metabelian group, which is a result of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源