论文标题
虚拟元素方法的内部估计
Interior estimates for the Virtual Element Method
论文作者
论文摘要
我们分析虚拟元素方法的局部准确性。更准确地说,我们证明了一个类似于有限元方法的错误,即,内部子域中的局部$ h^1 $误差受到术语的限制,就像在较大的内部子域中的局部平滑度所允许的最佳近似术语,以及在较大的内部子域中的局部平滑度,以及在负性规范中测量的全局误差。
We analyze the local accuracy of the virtual element method. More precisely, we prove an error bound similar to the one holding for the finite element method, namely, that the local $H^1$ error in a interior subdomain is bounded by a term behaving like the best approximation allowed by the local smoothness of the solution in a larger interior subdomain plus the global error measured in a negative norm.