论文标题
相互测量学和二面体组的计数和等分
Counting and equidistribution of reciprocal geodesics and dihedral groups
论文作者
论文摘要
我们研究了PSL(2,R)中晶格的无限二面体亚组的共轭类别的增长,从而概括了Sarnak和Bourgain-Kontorovich对模块化表面上互相大管数量增长的早期工作。我们还证明,相互的测量学是在单元切线束中等分的。
We study the growth of the number of conjugacy classes of infinite dihedral subgroups of lattices in PSL(2,R), generalizing earlier work of Sarnak and Bourgain-Kontorovich on the growth of the number of reciprocal geodesics on the modular surface. We also prove that reciprocal geodesics are equidistributed in the unit tangent bundle.