论文标题
辐射压力不稳定性的修改模型在10、10 $^5 $和10 $^7 $ $ M _ {\ odot} $积聚黑洞
Modified models of radiation pressure instability in application to 10, 10$^5$, and 10$^7$ $M_{\odot}$ accreting black holes
论文作者
论文摘要
某些积聚的黑洞表现出比通常的随机变化更强的变异模式。辐射压力不稳定性是可能解释这种效果的提议的机制之一。我们的目的是使用黑洞质量为10,10 $^5 $和10 $^7 $太阳能的物体的光度变化,该物体使用辐射压力主体的时间依赖性磁盘不稳定的时间变化。我们使用一维,垂直集成的时间依赖性数值方案,该方案同时建模磁盘和电晕的演变,并由垂直质量交换结合。我们还讨论了存在内部光学薄流量的可能性,即以对流为主的吸积流(ADAF)。我们发现,如果此半径较小(由于TDE现象),则爆发特征强烈取决于磁场的磁场和磁盘的外半径,而不是无限半径的固定磁盘中的不稳定性区域的尺寸。对于微QuaSar,对磁场的依赖性是单调的,并且周期随场强度降低。对于较大的黑洞质量,依赖性是非单调的,随着磁场的持续增长,该周期的初始上升随后被相对较快的减少所取代。更强的磁场可以稳定磁盘。我们的计算证实了辐射压力不稳定性模型可以解释微Quasar中的心跳状态。以准周期射血的形式在IMBH中检测到的快速变异性可以与模型一致,但仅当与TDE现象结合时。在我们的模型中,每年重复的外观重复变异性也需要较小的外半径,或者由于最近的TDE或由于与次级黑洞的存在有关的磁盘中存在间隙所致。
Some of the accreting black holes exhibit much stronger variability patterns than the usual stochastic variations. Radiation pressure instability is one of the proposed mechanisms which could account for this effect. We aim to model luminosity changes for objects with black hole mass of 10, 10$^5$, and 10$^7$ solar masses, using the time-dependent evolution of an accretion disk unstable due to the dominant radiation pressure. We use a 1-dimensional, vertically integrated time-dependent numerical scheme which models simultaneous evolution of the disk and corona, coupled by the vertical mass exchange. We also discuss the possibility of presence of an inner optically thin flow, namely the Advection-Dominated Accretion Flow (ADAF). We found that the outburst character strongly depends on the magnetic field and the outer radius of the disk if this radius is smaller (due to TDE phenomenon) than the size of the instability zone in a stationary disk with infinite radius. For microquasars, the dependence on the magnetic field is monotonic, and the period decreases with the field strength. For larger black hole masses, the dependence is non-monotonic, and initial rise of the period is later replaced with the relatively rapid decrease as the magnetic field continues to rise. Still stronger magnetic field stabilizes the disk. Our computations confirm that the radiation pressure instability model can account for heartbeat states in microquasars. Rapid variability detected in IMBH in the form of Quasi-Periodic Ejection can be consistent with the model but only if combined with TDE phenomenon. Yearly repeating variability in Changing Look AGN also requires, in our model, small outer radius either due to the recent TDE or due to the presence of the gap in the disk related to the presence of a secondary black hole.