论文标题

香农指数的新置信区间方法

New confidence interval methods for Shannon index

论文作者

Palma, Gabriel R., Zocchi, Silvio S., Godoy, Wesley A. C., Wiendl, Jorge A.

论文摘要

几个因素会影响社区的结构,包括生物学,物理和化学现象,影响了生物多样性的量化,这是通过多样性指数(例如香农的熵)来衡量的。然后,一旦获得了点估计,通常会使用诸如引导程序之类的置信区间方法。但是,这些方法可以具有不同的性能,许多作者在过去十年中揭示了这些表现。此外,诸如估计分布的不对称性以及香农多样性指数估计量偏差的可能性可能会导致对研究界的建议。因此,我们提出了两种方法,并使用他们的表演来面对这些问题,将它们与其他七个方法进行比较。第一个想法使用可靠的间隔(CI)方法来构建自举置信区间。第二个首先要纠正偏置,然后使用渐近方法。我们考虑了27种社区结构,这些结构代表了具有高统治地位,高度代码或中等优势的场景,这些物种数量等于4、20或80和10、50、50或500个人,以比较其表现。然后,我们生成了1000个样本,构建了95%的置信区间,并计算了它们包括每个社区结构的社区多样性指数(覆盖率)的次数。我们的结果表明,两种提出的方​​法都可以估计香农的多样性。模拟研究表明,与其他方法相比,Bootstrap-T技术具有最佳性能,即最佳覆盖率。最后,我们通过将其应用于原始的蚜虫和寄生虫物种数据集来说明该方法。当分析的社区结构与模拟的结构相似时,我们建议使用Bootstrap-T。此外,这些方法为高优势方案提供了高性能。

Several factors affect the structure of communities, including biological, physical and chemical phenomena, impacting the quantification of biodiversity, measured by diversity indexes such as Shannon's entropy. Then, once a point estimate is obtained, confidence intervals methods such as the bootstrap ones are often used. These methods, however, can have different performances, which many authors have revealed in the last decade. Furthermore, problems such as the asymmetry of the distribution of estimates and the possibility of Shannon's diversity index estimator bias can lead to incorrect recommendations to the research community. Thus, we propose two methods and compare them with seven others using their performances to face these problems. The first idea uses the credible interval (CI) method to build a bootstrap confidence interval. The second one starts by correcting the bias and then uses an asymptotic approach. We considered 27 community structures representing scenarios with high dominance, high codominance or moderate dominance, the number of species equal to 4, 20 or 80 and 10, 50 or 500 individuals to compare their performances. Then, we generated 1000 samples, built 95% confidence intervals, and calculated the percentage of times they included the community diversity index (coverage percentage) for each community structure. Our results showed the feasibility of both proposed methods to estimate Shannon's diversity. The simulation study revealed the bootstrap-t technique had the best performance, i.e., best coverage percentage, compared with the other methods. Finally, we illustrate the methodology by applying it to an original aphid and parasitoid species dataset. We recommend the bootstrap-t when the community structure analysed is similar to the simulated ones. Also, the methods provided high performance for the high dominance scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源